TECHNICAL NOTE

USDA-Natural Resources Conservation Service Boise, Idaho

NEVADA TN PLANT MATERIALS NO. 46

DECEMBER 2003

IDAHO TN PLANT MATERIALS NO. 13

HARVESTING, PROPAGATING, AND PLANTING WETLAND PLANTS

J. Chris Hoag, Wetland Plant Ecologist Plant Materials Center, Aberdeen, Idaho

HARVESTING, PROPAGATING, AND PLANTING WETLAND PLANTS

J. Chris Hoag, Wetland Plant Ecologist, Interagency Riparian/Wetland Plant Development Project, USDA - Natural Resources Conservation Service, Plant Materials Center, Aberdeen, ID 83210

INTRODUCTION

Sedges (*Carex spp.*), spikerushes (*Eleocharis spp.*), bulrushes (Scirpus spp.) and rushes (Juncus spp.) are used extensively in riparian and wetland revegetation because of their aggressive root systems. They also provide wildlife habitat for a variety of terrestrial and aquatic species. They form buffer zones that remove pollutants from surface runoff. The above ground biomass provides roughness that causes stream velocity to decrease and sedimentation to occur. The thick humus developing in those areas breaks down organic compounds and captures nutrients (Carlson 1993).

Wetland plant root systems are important means of stabilizing degraded sites. Manning et al. (1989) found that Nebraska Sedge (*Carex nebrascensis* Dewey) produced 212 ft/in³ (382.3 cm/cm³) of roots in the top 16 in (41 cm) of the soil profile and Baltic Rush (*Juncus balticus* Willd) had 72 ft/in³ (134.6 cm/cm³) of roots. An upland grass like Nevada bluegrass only has 19 ft/in³ (35.3 cm/cm³) of roots. The root system is the basis for soil bioengineering. Soil bioengineering increases the strength and structure of the soil and thereby reduces streambank erosion. Most soil bioengineering applications emphasize the use of woody riparian plants. However, herbaceous wetland plants provide more fibrous root systems that in combination with the larger woody plant roots do a better job of tying the soil together (Bentrup and Hoag 1999).

Wetland plants are also used for constructed wetland systems (CWS). A CWS is a wetland that is constructed in an area that has no previous history of wetland hydrology for the purpose of improving water quality. Water purification is a natural function of wetlands. The wetland plants provide suitable sites for colonizing microbial populations to establish on. The microbial populations live on the plant roots and breakdown various nutrients found in the water. The

above-ground biomass serve as nursery sites for periphyton that also break down various nutrients.

DIRECT SEEDING OF WETLAND PLANTS

Many wetland plants are very difficult to seed in the wild. Wetland plant seeds usually need three things to germinate: 1) heat, 2) water, and 3) light. The need for light means that wetland plant seeds need to be seeded on the surface and they can not be covered with soil (Grelsson and Nilsson 1991, Leck 1989, Salisbury 1970). Drilling the seed with a drill will cover the seed especially if packer wheels or drag chains are used.

Many species have a very hard seed coat that takes up to one year or longer to break down enough for the embryo to germinate. Many species require special stratification treatments to prepare the seed for planting. These treatments include everything from acid wash to mechanical scarification, from pre-chilling to extremely high temperature soil conditions. Occasionally, dormant seeding (seeding during the late fall or winter after the plants have gone dormant) can be successful, but it depends on the species.

Not having absolute control of the water going into the wetland or riparian area is the most common mistake that occurs when seeding wetland plants. Without good water control, when water enters the system the newly planted seeds will float to the water surface and move to the water's edge where wave action will deposit the seed in a very narrow zone. The seed will germinate here and the stand will generally be quite successful as long as the hydrologic conditions are maintained for the various species deposited there (Hoag and Sellers 1995). With good water control, the seeds, for the most part, will stay in place and the stand will cover the wetland bottom instead of just around the fringe.

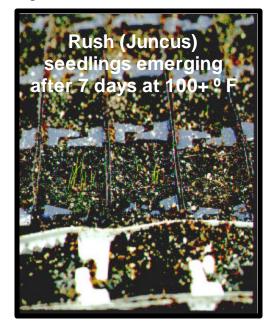
Some species when seeded in a greenhouse setting need a cold-hot stratification environment for successful germination. This means that the seeds are placed in cold storage at 32-36° F for 30-60 days and then they are planted in moist soil containers at about 100° F. Heat is one of the essential requirements for germination and growth. (Hoag et al. 1995)

Based on these difficulties, using direct seeding of herbaceous plants as the primary means of revegetating a site will require more attention to planning and control of site hydrology during the establishment period to be successful. It also means that you will need to know what specific germination/stratification requirements (if any) that the targeted species require. Successful establishment of herbaceous vegetation by direct seeding is possible and examples of these successes range from the establishment of Tufted Hairgrass (*Deschampsia caespetosa*) wetlands in Oregon to multiple species herbaceous depression wetlands in Delaware. Typically; however, direct seeding of herbaceous species is not used as the primary means of active revegetation, but it is a method to increase the overall species diversity in a wetland, especially around the perimeter, and to establish populations of specific target species.

Revegetating a site with herbaceous species plugs of greenhouse grown material has shown a much higher establishment rate than with seeding or collections of wildlings (plugs collected

from wild populations) (Hoag and Sellers 1995). The remainder of this paper discusses the use of seedlings of wetland plants as a means of actively revegetating herbaceous vegetation on restored and enhanced wetlands.

COLLECTION AND PROPAGATION OF WETLAND PLANTS


Woody shrubs, grasses and wetland plants are often grown in small containers or plugs [volumes less than 22 in³ (361 cm³)]. Plugs are used in bioengineering designs when the water is too deep or persistent to get woody plants established in other ways. Transplanting wild plants ("wildlings") is sometimes used but small volume containers have been shown to have higher establishment rates and to spread faster and further (Hoag 1994). There are two basic procedures for obtaining wetland plant plugs: growing them or harvesting wildlings from a donor site.

Greenhouse Propagation: As previously stated, when growing wetland plants from seed, three things are required: 1) water, 2) heat, and 3) light. The need for water is fairly straightforward especially when one thinks about conditions in a natural wetland. Light, however, is not as obvious. Covering wetland plant seeds with even a thin covering of soil will significantly decrease germination of some species. Heat is also less obvious.

Natural wetlands are generally very hot and humid. Our research has found that greenhouse temperatures in the range of 100°F or higher will increase germination and growth.

Seeds of most of the wetland plants except rushes need to be stratified. Stratification is essentially "fooling" the seeds into germination mode by mimicking the environmental conditions that they would be subject to had they remained outside during the winter. The seeds are stratified in small plastic containers that are filled with distilled water. We add about 0.3 oz (8 g) of loose sphagnum moss to the water in the bottom of the cup. The seeds are put into a coffee filter and the filter is nestled down into the moss. The containers are

placed in a dark cooler for 30 days at 32-36°F. At the end of 30 days, the seeds are removed from the stratification medium.

When planting wetland plant seeds in the greenhouse, we use special propagation tanks and Rootrainers_{tm} with a 1:1:1 soil mix of sand, vermiculite, and peat. Rootrainers_{tm} have a large hole in the bottom that needs to be covered so the soil does not wash out when water is added to the tanks. A single sheet of paper towel crumpled up and shoved into the mouth of each cell will prevent this. The seeds are placed on the soil surface of the cells in each Rootrainer $_{tm}$ after the surface has been $\underline{\text{firmly}}$ packed. A 2 x 2 in (5 x 5 cm) wooden tamp works well and can pack the soil to a sufficient density that a finger will barely make an impression in the soil surface. About 5 to 10 seeds are put on a finger and pushed on to the soil surface. The seeds need to be in good contact with the soil surface.

After the stratified seeds are planted on the soil surface, the tanks are filled with water to within about one inch of the soil surface. The seeds should be illuminated for 24 hours a day with 400-watt metal halide lamps for the first month. After one month the lights can be turned off. Covering the propagation tanks with clear plastic while the seeds are germinating helps keep the environment warm and humid. If you find that you have a problem with damping off of the seedlings, try flooding the soil. Leave the soil completely submerged under about 1/4 to 1/2 in (6.4 to 12.7 mm) of water for about two weeks. After this period lower the water level. This procedure will subdue the fungus and may also stimulate more stubborn seeds to germinate. Do not flood the soil if the seeds have not germinated or they will float and move out of the cells.

With this method, 22 in³ (361 cm³) plants can be grown from collection to full size in less than 100 days. Plugs can be held in the greenhouse if necessary for extended periods of time with minimal maintenance. Several crops can be raised throughout the year because of the short turn around time.

If growing the plants is not an option and they must be purchased, several things need to be considered. It is important to find a grower who is willing and able to grow wetland plants that can be difficult to propagate. The grower must understand the special propagation requirements and be able to accomplish them. Make sure the grower understands the project plant requirements in terms of height and size at the time that the contract is signed. When determining whether to accept the plant materials, look at the roots in addition to the tops. The tops and roots should be about the same in terms of density. Always remove several plants from their containers to look at the roots. The roots should extend to the bottom of the container, but they should not be root bound (wound around the inside of the container). If they are root-bound, the grower did not transplant them to larger containers in a timely manner. The roots should have several well-developed rhizomes in addition to hair roots. The tops should be vigorous and as tall as the contract called for. Remember if the tops are too short, the plants will be in danger of drowning if planted in water that is too deep. The aerenchyma should be well started in the bottom third of the above ground biomass. Determine the planting date

before going to the grower so that he knows when the plants need to be ready. Check in with the grower occasionally especially early to make sure that he has been able to get beyond the germination stage. If problems occur, there might still be time to go to another grower or to adjust your planting date.

Wildlings or (Wild Transplant Collection): Wetland plants because of their tremendous root systems are readily transplanted and the remaining plants will fill in the harvest hole rapidly. One rule of thumb is to dig no more than 1 ft² (0.09 m²) of plant material from a 4 ft² (0.4 m²) area. It is not necessary to go deeper than about 5 to 6 in (13 to 15 cm). This will get enough of the root mass to ensure good establishment at the project site. It will also retain enough of the transplants' root system below the harvest point to allow the plants to grow back into the harvest hole in one growing season assuming good hydrology and some sediment input (Bentrup and Hoag 1999). Transplants can be taken at almost any time of the year. Collections in Idaho have been taken from March to October with little or no difference in transplant establishment success. If plugs are taken during the summer months, cut the tops down to about 4 to 5 in (10 to 13 cm) above the potential standing water height or 10 in (26 cm) which ever is taller. Research at the Aberdeen Plant Materials Center has shown that covering the cut ends with water will not necessarily kill the plant, but will significantly slow its establishment rate (except if left for longer periods of time) (Hoag et al. 1992). Cutting the tops will also increase the survival rate of transplants that are transported long distances.

Generally, leaving the soil on the plug will increase the establishment success by about 30%. Beneficial organisms that are typically found on the roots of the wetland plants that are important in the nitrogen and phosphorous cycles can be moved to the new site which often will not have the organisms. However, there will be an increase in the volume of material that needs to be transported. In addition, if collections are made from a weed

infested area, there is a good chance that weed seeds could be transported in the soil. Washed plugs can be inoculated with mycorrhizae purchased from dealers if the project objectives call for it. The collection location will also help determine whether the soil should be left on the plugs or washed off.

If a total of 1 ft² (0.09 m²) of plant material is harvested, it is possible to get 4 to 5 individual plants plugs from the larger plug. The plugs can either be chopped with a shovel very rapidly or the plugs can be cut relatively accurately with a small saw so they can easily fit into a predrilled, set diameter hole. To get the right length of plug, lay the large plug on its side on a sheet of plywood and use the saw to cut the bottom off level and to the desired length. After this, stand it up and cut smaller plugs off like a cake.

Make sure the length of the plug is related to the saturation zone at the planting site. The bottom of the plug needs to be in contact with the saturation zone. Match the amount of water with the wetland plant species. Ogle and Hoag (2000) display a hydrologic planting zone diagram that outlines the various hydrologic regimes. They also include a series of tables that specify which zones various species will tolerate.

Wetland Transplant Planting

Natural wetland systems have high species diversity. When selecting plant species for the project wetland, try to copy a nearby natural wetland. Identify the particular hydrology in areas where the individual plant species are growing. Make note of how deep the water is. Try and imagine how long the plants will be inundated. Determine if the plants are in flowing or relatively stagnant water. Rarely will a natural wetland be totally stagnant through time. Generally, there is water flowing into the wetland from somewhere either above ground or from groundwater. Spring and fall overturn, as well as wind mixing, also help to circulate the water.

Next, prepare the planting area. The easiest way to plant the plugs is by flooding your planting site. Standing water is much easier to plant in than dry soil (this also ensures that your watering system, what ever it may be, works before you plant). Make sure the soil is super saturated so that you can dig a hole with your hand. This is more successful with fine soils than with coarse soils. Take the plug trays and place them in a Styrofoam cooler (you will not need the lid). Try to cover most of the roots with water while in transit. At the planting site, drain off most of the water so the cooler will float. Use the cooler to move the plugs around the wetland as you plant. Select a spot in your wetland to put a plug, reach into the water with your hand and dig out a hole deep enough for the plug to fit all the way into. Push the plug into the hole and pack around it with your hand. Make sure all of the roots are covered with soil. Be careful to not dislodge the plug and expose the roots when moving around. Start at one end of the planting site and work toward the opposite end.

Spacing of the plugs is a common question. Our research has indicated that many wetland plants will typically spread about 9 to 12 in (23 to 30 cm) in a full growing season. We plant on 18 in (46 cm) centers. Even though it takes fewer plants to plant an area at a wider spacing, we have found that plantings at wider spacing have less overall success than those planted at closer

spacing. The exact reason for this is unknown, but it could be a sympathetic response to plants of the same species. If the project budget does not allow for the purchase of enough plants to cover the wetland bottom, plant the plugs on 18 in (46 cm) centers but plant them in copses or patches that are about 10 ft (3 m) square. Space the copses about 10 ft (3 m) apart. The copses can be planted to different species according to the hydrology. Over time, the plants will spread out into the unplanted areas.

The planting window for wetland plants is quite long. At the Aberdeen Plant Materials Center, Idaho we have planted plugs from April through late October. Planting plugs in the fall and winter has resulted in frost heaving of the plugs so that only about 1/3 of the plug remained in the ground. The availability of water is critical. Remember wetland plants like it hot and wet. They tend to spread faster with warmer temperatures. If you plant in the spring, it will take the plants a while to get going, but they will have a longer establishment period. Fall planting will generally result in lower establishment success because of the shorter growing season and frost heaving damage.

The plants can be successfully established in a wide variety of soil textures. We have successfully established wetland plants in areas that are clay with no organic matter all the way up to gravels. The biggest problem is digging the holes. The soil texture will often limit the equipment available to dig the holes. In clay bottoms, we have used a small bulldozer or tractor with a ripper tooth to dig lines across the bottom about 8 in (20 cm) deep.

In general, fertilizer is not necessary. However, it really depends on the site and the soils. If during construction, the bottoms have been cut down to the subsoil and all of the naturally present nutrients have been removed, fertilization will probably be necessary unless the water coming into the wetland has a high nutrient load.

After planting, release the water into the site slowly. Remember that the young plants have not fully developed the aerenchymous material necessary for them to survive in anaerobic soils and standing water. After the initial planting, be careful not to raise the water level to more than about 1 in (2 to 3 cm) above the substrate. Too much water at this time may stress the new plants. Maintain the water at about 1 in (2 to 3 cm) for about one week, this will inhibit the germination and growth of any terrestrial species that may be present in the restored wetland. The water level can then be lowered to the substrate surface for 15 to 20 days. This will expose the mud surface, stimulating any wetland seeds that were brought in with your transplants to germinate as well as increase the rate of spread of the transplants. You can then raise the water level 1 to 2 in (3 to 5 cm). for another week. Then lower the water to the substrate surface for another 15 to 20 days. After this period, slowly raise the water level to 4 to 6 in (10 to 15 cm). for 3 to 5 days. Continue to gradually increase the water depth to 6 to 8 in (15 to 20 cm). Remember that the aerenchymous tissues in the plant shoots are what supply the roots with oxygen so be careful not to raise the water over the tops of the emergent vegetation. If the plants are not showing any stress, continue to carefully raise the water level to 12 to 20 in (30 to 50 cm) if possible. These suggested water level depths must be modified based upon the species used. Some species will not tolerate inundation at these suggested depths or durations. When in doubt, defer to the hydrology conditions on natural reference sites where the species occurs. The goal

here is to inundate the transition zone between wetland and upland as much as possible to control any invading terrestrial species. After about 20 days lower the water level to about 2 to 3 in (5 to 7 cm)(Hammer 1992). For the rest of the growing season, adjust the water level to maximize the desired community type. The key to determining the appropriate water level is to monitor the emergent wetland plant community. Raise the water level if weed problems surface. Lower the water level to encourage emergent wetland plant growth and spread. The key thought here is to fluctuate the water level. Natural wetlands rarely have a constant water level. Many species cannot tolerate a constant water level and will begin to die out. Species more tolerant to standing water will increase. The plant diversity that was so carefully planned for will be lost

Management during the establishment year is important to ensure that the plants do not get too much water or too little. Weed control is important especially during the establishment year because of the low water levels and exposed, unvegetated areas. A good weed control plan needs to be in place before planting. Monitoring the planting for 3-5 years after the establishment year will help maintain the planting and it will provide useful information for future plantings.

Recommendations:

- Always match the plant species to the hydrology associated with that species.
- In general, purchase the largest plugs you can afford. Planting technique will often determine the size of the plugs and the ease of planting.
- Plant the plugs on 18 to 24 in (46 to 61 cm) centers.
- Plant in patches rather than wider spacing.

- Fertilizer is generally not necessary unless the water coming into the site is relatively clean or the construction has cut into the subsoil.
- The plants tend to spread faster under saturated soil conditions rather than standing water.
 However, terrestrial weeds will move in to saturated soils much faster than flooded soils.
 Fluctuating the water level will help the plants spread and decrease terrestrial weed establishment.
- Water control is extremely important during the establishment year.
- Weed control needs to be planned and budgeted for at the beginning of the project.
- Monitoring is essential for the success of the project. Monitoring needs to have time and money allocated in the budget and it needs to have a specific person identified to carry it out.
- Successful wetland plantings take significant planning and a good understanding of the hydrology at each site.

LITERATURE CITED:

- Bentrup, G and J.C. Hoag. 1998. The practical streambank bioengineering guide; a user's guide for natural streambank stabilization techniques in the arid and semi-arid west. USDA-NRCS Plant Materials Center, Interagency Riparian/Wetland Plant Development Project, Aberdeen, ID.
- Carlson, J.R. 1992. Selection, production, and use of riparian plant materials for the Western United States." Proc. Intermountain Forest Nursery Association, T. Landis, compiler, USDA For. Serv. Gen. Tech. Rep. RM-211, Fort Collins, Colo., 55-67.
- Grelsson, G. and C. Nilsson. 1991. *Vegetation and seed-bank relationships on lakeshores*. Freshwater Biol. 26: 199-207.
- Hammer, D.A. 1992. Creating Freshwater Wetlands. Lewis Publishers, Boca Raton, FL. 298 pp.
- Hoag, J.C. 1994. Seed collection and hydrology of six different species of wetland plants. USDA NRCS Plant Materials Center, Riparian/Wetland Project Information Series #6, Aberdeen, ID.
- Hoag, J.C. and M.E. Sellers. 1995. *Use of Greenhouse propagated wetland plants versus live transplants to vegetate constructed or created wetlands*. USDA NRCS Plant Materials Center, Riparian/Wetland Project Information Series #7, Aberdeen, ID.
- Hoag, J.C. and T.A. Landis. (Manuscript in preparation) 2000. *Plant Materials for Riparian Revegetation*. Native Plant Journal, Vol. 2, Issue 1, January, 2001
- Hoag, J.C., M. Sellers and M. Zierke. 1992. Interagency Riparian/Wetland Plant Development Project: 4th quarter FY1992 progress report. USDA-NRCS Aberdeen Plant Materials Center, Aberdeen, ID.

- Hoag, J.C., M.E. Sellers, and M. Zierke. 1995. *Wetland plant propagation tips*. View from a wetland, No. 1 (1994-1995). USDA NRCS Plant Materials Center, Riparian/Wetland Project Newsletter, Aberdeen, ID.
- Leck, M.A. 1989. Wetland seed banks. In: <u>Ecology of Soil Seed Banks</u>, Leck, M.A., V.T. Packer, and R.L. Simpson (eds.), Academic Press, Inc.: San Diego, CA. p. 283-305.
- Manning, M.E., S.R. Swanson, T. Svejcar, and J. Trent. 1989. *Rooting characteristics of four intermountain meadow community types*. Journal of Range Management 42:309–312.
- Ogle, D. and J.C. Hoag. 2000. Stormwater plant materials, a resource guide. Detailed information on appropriate plant materials for Best Management Practices. City of Boise, Public Works Department, Boise, ID.
- Salisbury, E. 1970. *The pioneer vegetation of exposed muds and its biological features*. Phil. Trans. Royal Soc. London, Ser. B 259: 207-255.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape) should contact USDA's TARGET center at 202-720-2600 (voice and TDD).

To file a complaint, write the USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenues, SW, Washington, D.C. 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.